——充分认清大数据在国防和军队现代化建设中的作用 要点提示 ●随着大数据时代的到来,军事数据正在成为举足轻重的战略资源,未来智能化战争的重要基础就是大数据的挖掘与利用。 ●军事管理革命的核心是效能,而提高效能的关键在于发挥数据的驱动作用。 ●以数据共建、共享、共享为核心的科研信息化,正在深刻地改变科研的需求生成、研究模式和工作机制,成为推动科技创新的重要力量。 党的十九大发出全面推进国防和军队现代化建设的动员令,提出适应世界新军事革命发展趋势的明确要求。正在进行的这场新军事革命的本质特征是数字化、网络化和智能化。可以看到,数据正全面融入军事领域,成为军事科研的驱动力量、建设管理的核心要素、战争制胜的重要资源。 前不久,习主席在中共中央政治局第二次集体学习时强调,要审时度势、精心谋划、超前布局、力争主动,推动实施国家大数据战略,加快建设数字中国。开展大数据研究,首先应把握时代要求,充分认清大数据在国防和军队现代化建设中的地位作用。 军事数据是开启未来制胜之门的“金匙” 党的十九大报告强调,“加快军事智能化发展。”当前,战争形态正加速向信息化、智能化转变。智能化的重要基础是大数据的挖掘利用,军事数据在打赢未来战争中具有不可替代的关键作用。 数据是作战样式转变的核心。随着大数据时代的到来,军事数据正在成为举足轻重的战略资源,“数据战”作为一种崭新的作战样式逐步显现,这将是一种以数据攻击与防护为基本手段的全新作战。敌对双方围绕夺取“制数据权”,瞄准“数据红利”,在“数据新战场”上展开激烈争夺,通过掠夺、破坏和摧毁敌方数据资源,建立己方的数据优势,快速达成作战决策及行动优势,并将其适时转化成作战胜势。 “得数据者得天下”,未来“善用数据者赢得战争”将成为战场制胜的基本规律。当前,世界各国正采取有力举措,加速对军事数据的建设、保护和使用。以美国为例,已将大数据列入其“第三次抵消战略”,并大力整合其全球数据中心,以数据支撑作战样式转变,极力巩固其全球作战优势。 2017年4月26日,美国国防部成立“算法战跨职能小组”,正式启动“算法战”概念研究,旨在大力推动大数据相关技术在未来智能化战争中的应用。美国智库“新美国安全中心”2017年12月发布报告称,美国防部将算法摆在了与武器弹药同等重要的地位,并将其作为衡量美军力量的重要标准。 数据是联合作战指挥的血液。实现联合作战的关键在于数据能否高效流动、高效分析、高效融合。打通联合作战数据的共享信道,加速推进以数据流为纽带的联合指挥,促进不同作战单元和作战要素的互联互通、数据共享和综合集成,可有效消除指挥员的认知局限,使战场变得清晰透明、指挥变得精准高效,只有运筹于数据之中、决胜于数据之上,才能真正实现指挥决策的智能化、实时化、精准化。 目前,美国国防高级研究计划局已经将“从数据到决策”列为其最优先发展方向,以应对信息数据过载,提高数据分析智能化、自动化水平,大幅缩短指挥决策周期。如其设立的“洞察”项目,通过快速处理来自不同传感器的海量复杂数据,并整合到战场态势图上,协助指挥员高效分析作战情报、目标数据,为联合作战决策提供有效支撑。 数据是构建智能化战场的基石。未来战场将是高度智能化的,武器装备、保障体系、战场通信信息系统等都是智能化的,而智能化的重要基础就是数据。武器平台、火力系统、信息系统乃至作战人员,通过大数据、机器学习技术融为一体,形成了高度智能化的作战体系。基于大数据技术,无人系统将成为未来的重要作战力量;以数据为中枢的自主感知、自主分析、自主决策、自主打击,将使信息机动性取代能量机动性,成为制胜的关键要素;通过对海量数据的挖掘和利用,战场保障的效率和智能化水平将大幅提升。 美军正在实施的“第三次抵消战略”,提出要重点发展机器学习、人机协作、人类作战行动辅助系统、先进有人/无人作战编队等关键技术领域,无一不是以大数据和人工智能技术为核心,旨在提升武器装备和信息系统的智能化水平。 军事数据是激发军事管理革命的重要内核 党的十九大报告提出,“推进军事管理革命,完善和发展中国特色社会主义军事制度。”随着人类社会生产力和科技水平的不断提高,军事管理的思想理念、体制机制、方法手段必然会发生变化。科学技术和生产方式的每一次划时代创新,军事组织和军事理论的每一次深刻变革,都会催生和引发相应的军事管理革命。信息时代,军事管理革命的核心是效能。提高效能的关键在于发挥数据的驱动作用,着力提升军事管理的专业化、精细化、科学化水平。 数据驱动军事管理理念变革。习主席强调的军事管理革命,首要的是树立现代管理理念。质量管理大师戴明与现代科学管理之父德鲁克都曾提出:“不会量化就无法管理”。 数据是现代管理理念的基础,也是实现精细管理的基础。运用数据分析,可准确找出军事管理问题,为改革军事管理制度、提高军事管理效能提供依据。基于经验的决策,将越来越多地被基于大数据的全样本决策所取代。只有牢固树立“用数据说话、用数据决策、用数据管理、用数据创新”的管理理念,才能有效推进以效能为核心的军事管理革命。 数据驱动军队组织形态现代化。党的十九大报告提出,“全面推进军队组织形态现代化”。大数据时代,军队组织形态正在从以流程为主的线性方式逐渐向以数据为中心的扁平化网络方式转变,呈现出多主体协调、多流程渗透、信息高频交互等特征。以数据流引领信息流、资源流的融合发展,实现军队组织形态从“树状”向“网状”转变,能够推动军队组织机构设计优化、指挥流程高效化、权责配置科学化。比如,美国按照国防部体系结构框架统一要求,开发的信息系统实时采集和分析相关数据,并通过数据与能力等关联关系,对管理流程进行优化,从而确保了国防部有序运转。 数据驱动军事管理方式转变。习主席多次强调,要提高军队专业化、精细化、科学化管理水平。在新的军队建设管理体制下,军委成立了15个部门,对管理决策的要求越来越高,迫切需要融合宏观和微观各个层次的军事数据,全景式动态展示军事管理流程、要素和环节。通过对数据流、信息流的态势分析,不断优化管理体制和运行机制,推动军事管理从依靠经验的“艺术”转变为依靠数据的“科学”,为有效处理军事管理复杂巨系统问题提供新思路、新方法和新途径,将极大提高军事管理效能。 军事数据是军事科研创新的有力支撑 习主席强调指出,要坚持军事理论和军事科技紧密结合,创新军事科研工作模式。当前,以数据共建、共享、共享为核心的科研信息化,正在深刻地改变科研的需求生成、研究模式和工作机制,成为推动科技创新的重要力量。在军事领域,数据研究也将发挥越来越重要的作用。 引领军事科研方向。目前,我军科研立项的针对性和科学性还有待提高。采用大数据技术,对国内外、军内外各类信息数据进行综合集成和挖掘分析,不但可以及时发现我们的短板和弱项,还可以全面感知和分析主要国家军事科技发展现状,迅速捕捉研究热点,预测发展趋势,识别潜在的颠覆性技术和迷雾陷阱,为科学立项提供引领,推动军事科研需求生成模式发生重大转变。比如,美国防部技术情报办公室从2011年开始实施的“技术跟踪和地平线扫描”项目,运用大数据技术对全球科学技术活动进行全面感知和深入分析,分析优势差距,从而引领未来科研方向和重点。 转变军事科研范式。2007年,计算器图灵奖获得者吉姆·格雷提出,人类科研活动历经科学技术发展之初的“实验科学范式”、以模型和归纳为特征的“理论科学范式”、以模拟仿真为特征的“计算科学范式”,目前正在转向以大数据分析为特征的“数据科学范式”。这种研究范式下,大数据和人工智能将全面深度嵌入军事科研工作,以往通过实验或者模拟仿真等方式才能获取的科学结论,未来通过分析挖掘海量数据就能够发现未知规律、挖掘隐藏信息、捕获有价值知识,从而颠覆传统的军事科研模式和机制,形成新的军事科研范式,研究效率也将大幅提升。 推动理技融合深度发展。长期以来,我军军事理论研究和军事技术研究如何相互借力补台一直是“老大难”,理论研究缺乏先进技术支撑,技术研究缺少军事理论牵引。调整改革后,从体制上打破了军事理论研究和军事技术研究的壁垒,但要真正实现二者的深度融合,必须通过军事数据的全面共享和高效交互,打通理技融合的信息数据流,构建理技融合的底层通道,有效改变过去二元分立的局面,使数据共享成为军事科研理技融合“落一子而全盘活”的重要突破口。 在舆情引导中发挥大数据技术优势 网络舆情是网络舆论引导工作的基础和晴雨表,以大数据观念变革传统网络舆论引导思维,准确把握网络舆情的内在特征及其在演化过程中的潜在规律,对于新形势下做好网络舆论引导工作,维护网络社会安全,将具有重要的理论意义和实践价值。 近年来,以微信、微博为代表的社交媒体不断受到热捧。人们热衷于在这些社交媒体上发布自己的照片、心情、行踪等各类信息。手机支付、共享单车等在方便人们生活的同时,也在服务器上留下了大量的数据。正如全球知名咨询公司麦肯锡称:“数据,已经渗透到当今每一个行业和业务职能领域,成为重要的生产因素。” 当前大数据一词越来越多地被提及,大数据带来的信息风暴正在改变我们的生活、工作和思维。一切事物、一切行为都被数据化;情绪、思维、行为模式、认知、沟通、关系等等都成为数据……许许多多的决策行为将更多的基于数据、分析和事实做出,而不是像以往凭经验和直觉做出。 正是基于这样的原因,大数据也拓宽和加深了舆情引导和研究的广度和深度。大数据时代,很多舆情问题,如舆情发展动向、集群行为、社会态度、公众情绪、动态人际互动、社会认知等,都能借助大数据得到更为准确的可视化的测量和呈现,为抢占舆情引导的先机提供了坚实的基础和有力的技术支撑。 大数据技术是指运用搜索引擎、社交媒体、各类网络数据库,实时聚集文本和图像,利用搜索、分类、分析的软件,通过高速的计算机运作和业内专家的分析,精确描绘现状和预测未来。 一、利用大数据分析舆情动向 大数据技术的核心和目标是预测。具体到舆情引导,就是舆情工作人员利用大数据技术,从互联网浩如烟海的数据中挖掘出信息、判断趋势、提高效益。利用大数据技术把重点从单纯的搜集有效数据向对舆情的深入分析拓展,跟踪相关舆情,辅以决策参考。 舆情热点的产生、发展有其自己特有的规律。舆论发酵的过程,意见的表明和“沉默的”扩散是一个螺旋式的社会传播过程。在现实社会中,由于来自群体的压力,害怕陷入孤立的状态,而进入选择沉默期,但是在网络社会中,传播特点具有“碎片化”的信息传播方式、传播过程的互动性、病毒式传播模式,多渠道传播,如微博的准入门坎低、内容简短、操作便捷,因而,总能在一定时间内及时迅速地传播,网民之间相互转发形成的再传播,会引起很高的舆论关注,产生巨大的传播影响力。网民们更倾向于“选择”那些与自己的既有立场、态度一致或接近的内容。由于匿名性与互动性,人们更快的表达出意见,从沉默期转入雪崩状态出现网络舆论的一边倒。大数据时代舆情进入雪崩状态的时间更短,网络舆情一般分潜伏期、爆发期与恢复期。事发后的12小时是一个关键的时间节点。这就要求对舆情热点的引导在潜伏期的12小时内,越早响应越主动。 因此,在大数据时代,要不断增强关联舆情信息的分析和预测,从以往单纯的收集有效数据向对舆情的深入分析拓展,从注重“静态收集”向注重“动态跟踪”拓展,从致力“反映问题”向致力“解决问题”拓展,做到分析快、预警快、决策快。在数据收集时,还应采取以数据为中心的模式,侧重媒体热度、侧重负面信息、侧重具体评价、侧重公众情绪、侧重具体案例、侧重舆情分析、侧重综合舆情需求。通过设置关键词、设置系统栏目、设置专项事件、发现微博热点、敏感信息预警,将数据库中的有关信息集中呈现。对深层次的多级舆论信息,如新闻、微博后的评论,网民的社会关系,网民针对某一事件评论产生的情绪变化、以及煽动性、行动性言论的数据的深度挖掘,为舆情引导提供足够的预警时间。 大数据的蓬勃发展给舆情监控带来挑战,也给舆情管理提出更高的要求,不但要通过大数据技术手段,分析事件的关注程度、传播情况、发展趋势、网民情绪变化,还要深入某个观点的影响程度、影响人群,从而预测舆情走向,并对趋势做出正确的判断,同时还要善于利用多样化数据,将不同领域的数据关联起来进行分析。比如,将网站新闻数据、论坛数据、博客数据、微博数据进行比对,分析出热点舆情在不同舆论场的传播速度和广度;将用户职业数据、地域数据、年龄数据、专注领域等和社会网络数据结合起来,分析出不同的舆情热点在哪些职业、地域、年龄段、团体中广泛传播,更有利于针对性地进行舆论引导。 二、利用大数据开展舆情治理 大数据的出现和引用,引起了各国科技界,产业界和政府部门的高度关注。大数据作为数字化生产时代的新型战略资源,将对国家治理和社会发展起到巨大的作用。要针对当前网络舆情治理现状,从维护国家利益、社会利益和个人利益的角度出发,采取切实可行的措施,利用大数据技术不断地改革与完善舆情热点的处置机制和处置手段,巩固和发展健康的网络程序,加强舆情治理,以维护社会稳定和长治久安的社会秩序。 将大数据和社会治理紧密结合起来,改进网络舆情源头治理。网络舆情本质上是社情民意的体现,加强网络舆情管理就是加强社会治理。要运用大数据强大的“关联分析”能力,构建网络舆情数据“立方体”,把网上网下各方面数据整合起来,进行分析,挖掘网络舆情和社会动态背后的深层次关系,实现网络舆情管理和社会治理的紧密联动、同步推进。将大数据和网上政务信息公开紧密结合起来,提升政府公信力。探索建立我国的大数据政务公开系统,引导社会力量参与对公共数据的挖掘和使用,让数据发挥最大价值。将大数据和日常舆情管理紧密结合起来,提高网络舆情整体掌控能力。 建立网络舆情大数据台账系统,实时记录网站、博客、微博、微信、论坛等各个网络平台数据,全面分析舆情传播动态,从瞬息万变的舆情数据中找准管理重点、合理配置资源,提高管理效能。将大数据和突发事件应对紧密结合起来,提高网络舆情应急处置能力。建立“舆情量化指针体系”“演化分析模型”等数据模型,综合分析事件性质、事态发展、传播平台、浏览人数、网民意见倾向等各方面数据,快速准确地划分舆情级别,确定应对措施,解决传统的舆情分级中存在的随意性、滞后性等问题,做到科学分析、快速处置。将大数据和舆论引导紧密结合起来,提高感染力和说服力。 一方面要“循数而为”,通过分析网上数据,建立网民意见倾向分析模型,了解网民的喜好和特点,做到“善说话、说对话”。 另一方面要“用数据说话”。数据最有说服力,要在充分收集相关数据的基础上,运用图表等数据可视化技术,全面呈现事件的来龙去脉,让网民既了解事件真相,也了解事件背景和历史脉络,消除舆论的“盲人摸象”效应,化解网民偏激情绪,实现客观理性。 三、利用大数据重塑管理体系 信息数据无限性和人们关注能力有限性之间的矛盾,加剧了社会舆情的“盲人摸象”效应,而诸多偶发性因素使社会舆情更加复杂多变。 传统的舆情监测逻辑和分析方法,因其片面化、单一化和静态化,无法完成日益频繁和繁重的社会舆情管理任务,更谈不上支持社会治理科学决策和准确预判。大数据技术的应用,能够对舆情数据进行立体化、全局化、动态化研究,通过挖掘、分析舆情关联数据,将监测目标时间节点提前到敏感消息传播初期,通过构建模型预测舆情走向,从而为正确引导舆情提供决策参考,进一步提高舆情管理的科学性、针对性和实效性。 当前,我国在大数据管理方面还存在数据分散、利用率低、安全性不高等问题,需要尽快出台国家层面的大数据战略规划,加快数据立法进程,加大资金、技术、人力资源投入。建议建立由网信部门牵头的互联网大数据管理体制,设立政府首席信息官,统筹各方面数据的汇集、管理和利用,制定统一的数据接口标准,联通各行各业的“数据孤岛”,推动我国大数据加快发展。 建设网络舆情大数据基础平台。数据只有整合利用才能产生价值。当前,亟需建设统一高效的大数据基础平台,实现各行业、各领域数据的统一存储、交流互通。尽快建设我国网络数据中心,构建国家级的互联网大数据平台,全面汇集各方面数据。加快出台相关法律法规,明确各级各部门包括政府部门、企业、人民团体等向网络数据中心提供和共享数据的权利义务,使网络数据中心成为全国数据存储和交换的中心枢纽,实现数据的快速汇集、规范管理、高效利用。 与此同时也应看到,大数据既有全面、动态、开放等优势,也有价值密度低、传播速度快等难点,必须加快技术攻关,提高数据“沙里淘金”的能力。 一是加强数据监测技术,实现对媒体、论坛、博客、微博、微信等各个网络平台数据的全面抓取和记录,特别是要提高对图片、音视频等数据的自动识别能力。 二是加强大规模数据存储技术。建设具有海量存储能力的大数据平台,实现对大规模数据的高效读写和交换。 三是加强数据挖掘技术,从海量数据中快速识别有价值数据,并挖掘数据背后隐藏的规律。四是加强数据分析技术,包括关联分析、聚类分析、语义分析等等,自动分析网上言论蕴含的意见倾向及相互之间的关联性,揭示舆情发展趋势。五是加强数据安全技术,包括身份验证、入侵检测等等,保障数据安全。 随着大数据时代的到来,网络舆情在数据体量、复杂性和产生速度等方面发生巨大变化。网络舆情是网络舆论引导工作的基础和晴雨表,以大数据观念变革传统网络舆论引导思维,准确把握网络舆情的内在特征及其在演化过程中的潜在规律,对于新形势下做好网络舆论引导工作,维护网络社会安全,将具有重要的理论意义和实践价值。 延伸阅读:大数据,新一轮技术革命的“支点” 已跻身全球前十大互联网企业的阿里巴巴最值钱的不是它的总部大楼;阿尔法围棋打败人类有一样东西必不可少;网络支付、共享单车、网约车、刷脸,这些都需一样东西支撑。这就是大数据。 早在2012年,世界经济论坛发布的《大数据·大影响》报告就指出,大数据已成为一种像黄金和货币一样的经济资产。 可以说,在改变生活、促进传统行业升级改造、引领新兴产业蓬勃发展、提升社会运行和管理效率等方面,大数据已成为撬动新一轮技术与产业革命的“支点”。 无数据不生活,创新生活模式 人工智能、物联网、机器人、共享经济,这些要素相互迭加后,世界上出现了创造新型生活方式的机会。毋庸讳言,这也是新的经济增长机会。而所有这些都离不开大数据,超大量、随时随地产生的数据。 新技术要素相互迭加对生活影响的根本在哪里?日本《产经新闻》日前刊登文章认为,那就是在各个领域正在出现传统生活模式被取代的现象。比如出行和旅游,以往依赖路上找出租车或通过旅行社预订旅馆。随着大数据累积,旅行者自己也可利用基于数据的评估系统来作出判断,以保证旅途安全和舒适。优步、滴滴、爱彼迎……从大数据领域走在世界前列的企业不胜枚举。 在金融领域,那就是金融科技。以往如果离开了银行这一社会基础设施,人们就不能放心地存款、结算,但通过新技术与大数据的组合,就不断出现更加方便和廉价的存款、结算平台。在中国和美国,都存在IT相关企业推动金融科技的现象。 数据创造价值,产业迎来机遇 当前社会的数据资源正呈指数级增长。清华大学信息技术研究院研究员薛一波说:“现在的突出问题,一是部分传统企业行业和机构缺乏新思维,没有意识到,甚至不清楚大数据这种战略资源的价值所在;二是缺乏机构间融合和深度合作,有数据的不知怎么用,会用的没有数据。” 他认为,需要打破条条框框、利益分割,共同促进大数据产业链的健康发展,“除消费领域外,更多传统企业的大数据思维应成为行业共识”。 传统企业究竟如何赶上大数据的这列发展“快车”呢? “喷气式客机一起飞,就会产生海量数据,”薛一波举例说,“分析客机实时传输的大数据,可实时掌握飞机的运行状态,提前预警和发现潜在问题,采取预防、维修等措施,大大减少故障率。” 类似技术也应用在高铁上。薛一波说,以往铁路工人在铁轨上敲敲打打,通过声音检查问题;如今,高铁上的各种传感设备可实时传回车辆数据,通过大数据分析,即可实现故障预警、诊断、排查和定位,提高效率,降低成本。 他说,大数据分析可大幅提升传统行业的运行效率、降低运维成本、提升数据价值。在欧美等发达国家,工业大数据应用已非常普及。 “大数据技术推动传统产业升级是必然的,”暨南大学信息科学技术学院/网络空间安全学院副院长郑力明对记者说,比如,德国积极推动包含工业大数据应用在内的“工业4.0”计划,正是要进一步促使工业生产与信息技术融合,使供应、制造、销售各环节智慧化。 如今,大数据巨大的商业价值正成为推动经济变革的新引擎。中国工信部已印发《大数据产业发展规划(2016-2020年)》,提出到2020年基本形成技术先进、应用繁荣、保障有力的大数据产业体系。大数据相关产品和服务业务收入将突破1万亿元人民币,年均复合增长率保持30%左右。 美国高德纳咨询公司去年7月估计,未来5年内,仅用于解析大数据的云计算一项,IT产业就将有超过1万亿美元支出,直接或间接促进企业向云计算领域转型。 消除“数据烟囱”,打通“信息动脉” 统计显示,目前中国信息数据资源80%以上掌握在各级政府部门手里,“深藏闺中”造成极大浪费。一些地方和部门的信息化建设各自为政,形成“数据烟囱”和“信息孤岛”,给应用带来不便。 中国人民大学“中国调查与数据中心”副主任、社会学系副教授王卫东说,数据开放意义重大。因为大数据最初是用数据模型采集的各种信息的总和,开放数据能帮助研究人员找到之前看来不相干的事物间的关联,然后据此找到更精确的计算参数。开放程度越高,参数设置和分析就会越精准,得出的信息参考价值越高。 正因如此,“开放数据”已成为一股世界性运动,各国政府则成为这场运动中最重要的对象。推动信息跨部门跨层级共享共享,加快推进公共数据资源向社会开放,已经成为政府工作的重要目标。 2015年中国国务院印发的《促进大数据发展行动纲要》明确指出,数据已成为国家的基础性战略资源,要大力推动政府信息系统和公共数据互联开放共享,加快政府信息平台整合,消除“信息孤岛”,推进数据资源向社会开放,增强政府公信力,引导社会发展,服务公众企业。 (华发网根据新华社、中国海洋网、中国军网采编)
|