要闻分享| 关注中国| 逆耳忠言| 不平则鸣| 情感天空| 健康生活| 流行时尚| 保险理财| 讽刺幽默| IT与游戏| 信息交流| 华发移民| 华发工作| 摄影美图

社会聚焦| 旅游天地| 娱乐八卦| 音乐视频| 校友互动| 网络社区| 房屋安家| 教育培训| 中医瑰宝| 专栏作者| 科技文化| 华发留学| 华发红娘| 关于本站

华发网China168.info海外中文门户网站

 找回密码
 立即注册

扫一扫,访问微社区

查看: 345|回复: 0

谷歌超分辨率技术RAISR:模糊图片瞬变高清,速度提升数十倍

[复制链接]
发表于 2016-11-15 19:26:16 | 显示全部楼层 |阅读模式

谷歌超分辨率技术RAISR:模糊图片瞬变高清,速度提升数十倍

谷歌超分辨率技术RAISR:模糊图片瞬变高清,速度提升数十倍


  每天都有数以百万计的图片在互联网上被分享、存储,用户借此探索世界,研究感兴趣的话题,或者与朋友家人分享假期照片。问题是,大量的图片要么被照相设备的像素所限制,要么在手机、平板或网络限制下被人为压缩,降低了画质。

  如今高清显示屏正在家庭和移动设备上普及,因此,把低分辨率图片转化为高清版本,并可在多种设备上查看和分享,正在成为一项巨大的需求。日前,谷歌推出了一项新技术RAISR,其全称是“Rapid and Accurate Image Super-Resolution”,意为“快速、精确的超分辨率技术”。

  RAISR这项技术能利用机器学习,把低分辨率图片转为高分辨率图片。它的效果能达到甚至超过现在的超分辨率解决方案,同时速度提升大约十至一百倍,且能够在普通的移动设备上运行。而且,谷歌的技术可以避免产生混叠效应(aliasing artifacts)。

  此前已经具有通过升采样方式,把低分辨率图片重建为尺寸更大、像素更多、更高画质图片的技术。最广为人知的升采样方式是线性方法,即通过把已知的像素值进行简单、固定的组合,以添加新的像素值。因为使用固定的线性过滤器(一个恒定卷积核对整个图片的无差别处理),该方法速度很快。但是它对于重建高清作品里生动的细节有些力不从心。正如下面这张图片,升采样的图片看起来很模糊,很难称得上画质提升。

  对于RAISR,谷歌别辟蹊径得采用机器学习,用一对低分辨率、高分辨率图片训练该程序,以找出能选择性应用于低分辨图片中每个像素的过滤器,这样能生成媲美原始图片的细节。目前有两种训练RAISR的方法:

  第一种是“直接”方式,过滤器在成对高、低分辨率图片中直接学习。

  第二种方法需要先对低分辨率图片应用低功耗的的升采样,然后在升采样图片和高分辨率图片的组合中学习过滤器。

  “直接”方式处理起来更快,但第二种方法照顾到了非整数范围的因素,并且更好地利用硬件性能。

  无论是哪种方式,RAISR 的过滤器都是根据图像的边缘特征训练的:亮度和色彩梯度,平实和纹理区域等等。这又受到方向(direction,边缘角度),强度(strength,更锐利的边缘强度更高)和黏性(coherence,一项量化边缘方向性的指标)的影响。以下是一组RAISR过滤器,从一万对高、低分辨率图片中学习得到(低分辨率图片经过升采样)。该训练过程耗费约一小时。

  注:3倍超分辨率学习,获得的11x11过滤器集合。过滤器可以从多种超分辨率因素中学习获得,包括部分超分辨率。注意当图中边缘角度变化时,过滤器角度也跟着旋转。相似的,当强度提高时,过滤器的锐利度也跟着提高;黏性提高时,过滤器的非均相性(anisotropy)也提高。

  从左至右,学习得到的过滤器与处理后的边缘方向有选择性的呼应。举例来说,最底一行中间的过滤器最适合强水平边缘(90度梯度角),并具有高粘性(直线的而非弯曲的边缘)。如果这个水平边缘是低对比度的,那么如同图中最上一行,另一个过滤器就被选择。

  实际使用中,RAISR会在已经学习到的过滤器列表中选择最合适的过滤器,应用于低分辨率图片的每一个像素周围。当这些过滤器被应用于更低画质的图像时,它们会重建出相当于原始分辨率的细节,这大幅优于线性、双三(bicubic)、兰索斯(Lancos)解析方式。

  超分辨率技术更复杂的地方在于如何避免混叠效应,例如龟纹(Moire patterns)和高频率内容在低分辨率下渲染产生的锯齿(对图像人为降级的情形)。这些混叠效应的产物会因对应部分的形状不同而变化,并且很难消除。

  线性方法很难恢复图像结构,但是RAISR可以。下面是一个例子,左边是低分辨率的原始图片,左3和左5有很明显的空间频率混淆(aliased spatial frequencies),而右侧的RAISR图像恢复了其原始结构。RAISR的过滤器学习方法还有一项重要的优点:用户可以把消除噪音以及各类压缩算法的产物作为训练的一部分。当RAISR被提供相应的范例后,它可以在图片锐化之外学会消除这些效果,并把这些功能加入过滤器。

  超分辨率技术利用不同的方法已经有了不少喜人的进展。如今,通过把机器学习与多年来不断发展的成像技术相结合,图像处理技术有了长足的进步,并带来许多好处。举例来说,除了放大手机上的图片,用户还可以在低分辨率和超高清下捕捉、存储、传输图像,使用更少的移动网络数据和存储空间,而且不会产生肉眼能观察到的画质降低。

  小结:自从乔帮主2010年在iphone 4s上推出“视网膜屏”概念之后,数码产品市场开启了一场超高清显示革命。如今,家用显示器逐步走向4K,各大手机厂商也竞相推出2K旗舰机。但2K、4K内容的缺乏一直是困扰行业发展的痛点。此前的超分辨率技术受成本、硬件限制,主要应用于专业领域,未能大范围普及。

  此次谷歌RAISR大幅降低了图像增强的时间成本和硬件要求,有望实现超分辨率技术在消费领域的应用,把充斥互联网的低画质图片转化为高清图片,大幅提高视觉效果和用户体验。十分期待将来RAISR在移动设备的应用,例如把消费者手机拍摄的照片转化为媲美单反画质的高清美图。


  来源:雷锋网
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

QQ|关于我们|联系我们|用户须知|小黑屋|法律申明|隐私通告|华发网海外版china168.info

GMT-6, 2024-12-24 11:45

Powered by Discuz! X3.4

© 2001-2023 Discuz! Team.

快速回复 返回顶部 返回列表