要闻分享| 关注中国| 逆耳忠言| 不平则鸣| 情感天空| 健康生活| 流行时尚| 保险理财| 讽刺幽默| IT与游戏| 信息交流| 华发移民| 华发工作| 摄影美图

社会聚焦| 旅游天地| 娱乐八卦| 音乐视频| 校友互动| 网络社区| 房屋安家| 教育培训| 中医瑰宝| 专栏作者| 科技文化| 华发留学| 华发红娘| 关于本站

华发网China168.info海外中文门户网站

 找回密码
 立即注册

扫一扫,访问微社区

查看: 566|回复: 0

科亚医疗新冠AI检测研究成果,被放射顶刊《Radiology》收录

[复制链接]
发表于 2020-3-21 08:28:15 | 显示全部楼层 |阅读模式

雷锋网消息,北京时间3月20日,科亚医疗区分新冠肺炎与一般肺炎的“CT+AI”检测研究成果,被国际顶级放射学期刊《Radiology》收录并发表,这是《Radiology》发表的首个新冠诊断评估论文。论文标题为《基于肺部CT的人工智能检测COVID-19和社区获得性肺炎:诊断准确性评估》

肺部CT异常是新冠肺炎最典型的影像学表现,部分患者肺部影像改变早于临床症状,CT已成为当前筛查与诊断新冠肺炎的主要手段。
在回顾性的多中心研究中,科亚医疗采用深度学习技术,开发新冠肺炎的3D检测神经网络—COVNet(如图1所示),从肺部CT中提取各类影像特征鉴别新冠肺炎。

1.png

图1. 新冠肺炎检测神经网络COVNet框架图


(COVID-19:新冠肺炎;CAP:社区获得性肺炎;Non-Pneumonia:其他非肺炎)

为开发和验证该模型的准确性和稳健性,此次研究在六家医院收集了从2016年8月至2020年2月间共计3322名患者的4356例CT数据,其中包括新冠肺炎、社区获得性肺炎(非新冠)、以及其他非肺炎患者的CT检查数据。

在独立测试集中验证表明,科亚医疗研发的COVNet对新冠肺炎的鉴别灵敏度和特异性分别高达89.76%和95.77%,ROC(受试者工作特征)曲线下面积AUC为0.96。

同时,科亚医疗验证了模型对社区获得性肺炎的鉴别准确性(灵敏度86.85%,特异性92.28%,AUC为0.95)。研究结果证明了COVNet可以准确地检测出新冠肺炎,并将其与社区获得性肺炎和其他肺部疾病区分开。

为了提高模型的可解释性,科亚医疗的研究团队基于加权梯度类激活映射方法,来可视化导致深度学习模型COVNet做出决策的重要区域(由模型自动生成)。

图2.新冠肺炎、社区获得性肺炎、及非肺炎病例CT的可疑区域热图。

COVNet做出了决策的重要区域热图,a、b、c列分别展示了新冠肺炎、社区获得性肺炎、其他非肺炎数据的CT图(上)和可疑区域热图(下)。这些热图表明,COVNet最为关注异常区域,同时正确地忽略正常区域,以帮助算法框架识别出病灶区域并做出准确的疾病鉴别。

来源:雷锋网
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

QQ|关于我们|联系我们|用户须知|小黑屋|法律申明|隐私通告|华发网海外版china168.info

GMT-6, 2025-1-8 12:09

Powered by Discuz! X3.4

© 2001-2023 Discuz! Team.

快速回复 返回顶部 返回列表